X-Git-Url: http://www.dxcluster.org/gitweb/gitweb.cgi?a=blobdiff_plain;f=cmd%2Fshow%2Fmuf.pl;h=e880eabd9c20b05882821578a0b0becd26a1b3da;hb=c961a6af6d9aec8eba4d58803f890fc514a109cc;hp=e69de29bb2d1d6434b8b29ae775ad8c2e48c5391;hpb=fe322eb02369fded6defe0f3fa7ae6530496ef9c;p=spider.git diff --git a/cmd/show/muf.pl b/cmd/show/muf.pl index e69de29b..e880eabd 100644 --- a/cmd/show/muf.pl +++ b/cmd/show/muf.pl @@ -0,0 +1,165 @@ +#!/usr/bin/perl +# +# show/muf command +# +# Copyright (c) 1999 Dirk Koopman G1TLH +# +# $Id$ +# + +my ($self, $line) = @_; +my ($prefix, $hr2) = split /\s+/, $line; +return (1, $self->msg('e4')) unless $prefix; + +$hr2 = 2 if !$hr2 || $hr2 < 2; +$hr2 = 24 if $hr2 > 24; + +my @out; + +# get prefix data +my ($pre, $a) = Prefix::extract($prefix); + +# calc bearings and distance +my ($d, $b1, $b2); # distance, bearing from TX and from RX +my ($lat2, $lon2); # lats and longs in radians +my $lat1 = $self->user->lat; +my $lon1 = $self->user->long; +if (!$lon1 && !$lat1) { + push @out, $self->msg('heade1'); + $lat1 = $main::mylatitude; + $lon1 = $main::mylongitude; +} +$lat2 = $a->{lat}; +$lon2 = $a->{long}; +($b2, $d) = DXBearing::bdist($lat1, $lon1, $lat2, $lon2); +($b1, undef) = DXBearing::bdist($lat2, $lon2, $lat1, $lon1); + +# convert stuff into radians +$lat1 *= $d2r; +$lat2 *= $d2r; +$lon1 *= $d2r; +$lon2 *= $d2r; +$b1 *= $d2r; +$b2 *= $d2r; +$d = ($d / $R); + +my ($hr1, $day, $month) = (gmtime($main::systime))[2,3,4]; +$month++; +my $flux = Geomag::sfi; +my $ssn = Geomag::r || Minimuf::spots($flux); + +my $theta; # path angle (rad) +my ($lats, $lons); # subsolar coordinates (rad) +my $dB1 = 20; # transmitter output power (dBW) + +my $delay; # path delay (ms) +my $psi; # sun zenith angle (rad) +my ($ftemp, $gtemp); # my $temps +my ($i, $j, $h, $n); # int temps +my $offset; # offset for local time (hours) +my $fcF; # F-layer critical frequency (MHz) +my $phiF; # F-layer angle of incidence (rad) +my $hop; # number of ray hops +my $beta1; # elevation angle (rad) +my $dhop; # hop great-circle distance (rad) +my $height; # height of F layer (km) +my $time; # time of day (hour) +my $rsens = -123; # RX sensitivity + + +my @freq = qw(1.8 3.5 7.0 10.1 14.0 18.1 21.0 24.9 28.0 50.0); # working frequencies (MHz) +my $nfreq = @freq; # number of frequencies +my @mufE; # maximum E-layer MUF (MHz) +my @mufF; # minimum F-layer MUF (MHz) +my @absorp; # ionospheric absorption coefficient +my @dB2; # receive power (dBm) +my @path; # path length (km) +my @beta; # elevation angle (rad) +my @daynight; # path flags + +# calculate hops, elevation angle, F-layer incidence, delay. +$hop = int ($d / (2 * acos($R / ($R + $hF)))); +$beta1 = 0; +while ($beta1 < $MINBETA) { + $hop++; + $dhop = $d / ($hop * 2); + $beta1 = atan((cos($dhop) - $R / ($R + $hF)) / sin($dhop)); +} +$ftemp = $R * cos($beta1) / ($R + $hF); +$phiF = atan($ftemp / sqrt(1 - $ftemp * $ftemp)); +$delay = ((2 * $hop * sin($dhop) * ($R + $hF)) / cos($beta1) / $VOFL) * 1e6; + +# print summary of data so far +push @out, sprintf("RxSens: $rsens dBM SFI:%4.0lf R:%4.0lf Month: $month Day: $day", $flux, $ssn); +push @out, sprintf("Power : %3.0f dBW Distance:%6.0f km Delay:%5.1f ms", $dB1, $d * $R, $delay); +push @out, sprintf("Location Lat / Long Azim"); +push @out, sprintf("%-30.30s %-18s %3.0f", $main::myqth, DXBearing::lltos($lat1*$r2d, $lon1*$r2d), $b1 * $r2d); +push @out, sprintf("%-30.30s %-18s %3.0f", $a->name, DXBearing::lltos($lat2*$r2d, $lon2*$r2d), $b2 * $r2d); +my $head = "UT LT MUF Zen"; +for ($i = 0; $i < $nfreq; $i++) { + $head .= sprintf "%5.1f", $freq[$i]; +} +push @out, $head; + +my $hour; + +# Hour loop: This loop determines the min-hop path and next two +# higher-hop paths. It selects the most likely path for each +# frequency and calculates the receive power. The F-layer +# critical frequency is computed directly from MINIMUF 3.5 and +# the secant law. + +$offset = int ($lon2 * 24. / $pi2); +for ($hour = $hr1; $hour < $hr2+$hr1; $hour++) { + my $dh = $hour; + while ($dh >= 24) { + $dh -= 24; + }; + $time = $dh - $offset; + $time += 24 if ($time < 0); + $time -= 24 if ($time >= 24); + my $out = sprintf("%2.0f %2.0f", $dh, $time); + $ftemp = Minimuf::minimuf($flux, $month, $day, $dh, $lat1, $lon1, $lat2, $lon2); + $fcF = $ftemp * cos($phiF); + + # Calculate subsolar coordinates. + $ftemp = ($month - 1) * 365.25 / 12. + $day - 80.; + $lats = 23.5 * $d2r * sin($ftemp / 365.25 * $pi2); + $lons = ($dh * 15. - 180.) * $d2r; + + # Path loop: This loop determines the geometry of the + # min-hop path and the next two higher-hop paths. It + # calculates the minimum F-layer MUF, maximum E-layer + # MUF and ionospheric absorption factor for each + # geometry. + for ($h = $hop; $h < $hop + 3; $h++) { + + # We assume the F layer height increases during + # the day and decreases at night, as determined + # at the midpoint of the path. + $height = $hF; + $psi = Minimuf::zenith($d / 2, $lat1, $lon1, $b2, $b1, $lats, $lons); + if ($psi < 0) { + $height -= 70.; + } else { + $height += 30; + } + $dhop = $d / ($h * 2.); + $beta[$h] = atan((cos($dhop) - $R / ($R + $height)) / sin($dhop)); + $path[$h] = 2 * $h * sin($dhop) * ($R + $height) / cos($beta[$h]); + Minimuf::ion($h, $d, $fcF, $ssn, $lat1, $lon1, $b2, $b1, $lats, $lons, \@daynight, \@mufE, \@mufF, \@absorp); + } + + # Display one line for this hour. + $out .= sprintf("%5.1f%4.0f ", $mufF[$hop], 90 - $psi * $r2d); + $ftemp = $noise; + for ($i = 0; $i < $nfreq; $i++) { + $n = Minimuf::pathloss($hop, $freq[$i], 20, $rsens, 0, \@daynight, \@beta, \@path, \@mufF, \@mufE, \@absorp, \@dB2); + my $s = Minimuf::ds($n, $rsens, \@dB2, \@daynight); + $out .= " $s"; + } + $out =~ s/\s+$//; + push @out, $out; +} + +return (1, @out);